Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(6): nwae114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38712324

RESUMEN

Although single-atom Cu sites exhibit high efficiency in CO2 hydrogenation to methanol, they are prone to forming Cu nanoparticles due to reduction and aggregation under reaction conditions, especially at high temperatures. Herein, single-atom Cu sites stabilized by adjacent Na+ ions have been successfully constructed within a metal-organic framework (MOF)-based catalyst, namely MOF-808-NaCu. It is found that the electrostatic interaction between the Na+ and Hδ- species plays a pivotal role in upholding the atomic dispersion of Cu in MOF-808-NaCu during CO2 hydrogenation, even at temperatures of up to 275°C. This exceptional stabilization effect endows the catalyst with excellent activity (306 g·kgcat-1·h-1), high selectivity to methanol (93%) and long-term stability at elevated reaction temperatures, far surpassing the counterpart in the absence of Na+ (denoted as MOF-808-Cu). This work develops an effective strategy for the fabrication of stable single-atom sites for advanced catalysis by creating an alkali-decorated microenvironment in close proximity.

2.
Angew Chem Int Ed Engl ; : e202405027, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656532

RESUMEN

A novel class of crystalline porous materials has been developed utilizing multilevel dynamic linkages, including covalent B-O, dative B←N and hydrogen bonds. Typically, boronic acids undergo in situ condensation to afford B3O3-based units, which further extend to molecular complexes or chains via B←N bonds. The obtained superstructures are subsequently interconnected via hydrogen bonds and π-π interactions, producing crystalline porous organic frameworks (CPOFs). The CPOFs display excellent solution processability, allowing dissolution and subsequent crystallization to their original structures, independent of recrystallization conditions, possibly due to the diverse bond energies of the involved interactions. Significantly, the CPOFs can be synthesized on a gram-scale using cost-effective monomers. In addition, the numerous acidic sites endow the CPOFs with high NH3 capacity, surpassing most porous organic materials and commercial materials.

3.
J Am Chem Soc ; 146(15): 10798-10805, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579304

RESUMEN

Though the coordination environment of single metal sites has been recognized to be of great importance in promoting catalysis, the influence of simultaneous precise modulation of primary and secondary coordination spheres on catalysis remains largely unknown. Herein, a series of single Ni(II) sites with altered primary and secondary coordination spheres have been installed onto metal-organic frameworks (MOFs) with UiO-67 skeleton, affording UiO-Ni-X-Y (X = S, O; Y = H, Cl, CF3) with X and Y on the primary and secondary coordination spheres, respectively. Upon deposition with CdS nanoparticles, the resulting composites present high photocatalytic H2 production rates, in which the optimized CdS/UiO-Ni-S-CF3 exhibits an excellent activity of 13.44 mmol g-1, ∼500 folds of the pristine catalyst (29.6 µmol g-1 for CdS/UiO), in 8 h, highlighting the key role of microenvironment modulation around Ni sites. Charge kinetic analysis and theoretical calculation results demonstrate that the charge transfer dynamics and reaction energy barrier are closely correlated with their coordination spheres. This work manifests the advantages of MOFs in the fabrication of structurally precise catalysts and the elucidation of particular influences of microenvironment modulation around single metal sites on the catalytic performance.

4.
Acc Chem Res ; 57(8): 1214-1226, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38552221

RESUMEN

ConspectusChemical reactions can be promoted at lower temperatures and pressures, thereby reducing the energy input, by introducing suitable catalysts. Despite its significance, the quest for efficient and stable catalysts remains a significant challenge. In this context, addressing the efficiency of catalysts stands out as a paramount concern. However, the challenges posed by the vague structure and limited tailorability of traditional catalysts would make it highly desirable to fabricate optimized catalysts based on the understanding of structure-activity relationships. Covalent organic frameworks (COFs), a subclass of fully designed crystalline materials formed by the polymerization of organic building blocks through covalent bonds have garnered widespread attention in catalysis. The precise and customizable structures of COFs, coupled with attributes such as high surface area and facile functional modification, make COFs attractive molecular platforms for catalytic applications. These inherent advantages position COFs as ideal catalysts, facilitating the elucidation of structure-performance relationships and thereby further improving the catalysis. Nevertheless, there is a lack of systematic emphasis on and summary of structural regulation at the atomic/molecular level for COF catalysis. Consequently, there is a growing need to summarize this research field and provide deep insights into COF-based catalysis to promote its further development.In this Account, we will summarize recent advances in structural regulation achieved in COF-based catalysts, placing an emphasis on the molecular design of the structures for enhanced catalysis. Considering the unique components and structural advantages of COFs, we present the fundamental principles for the rational design of structural regulation in COF-based catalysis. This Account starts by presenting an overview of catalysis and explaining why COFs are promising catalysts. Then, we introduce the molecular design principle for COF catalysis. Next, we present the following three aspects of the specific strategies for structural regulation of COF-based catalysts: (1) By designing different functional groups and integrating metal species into the organic unit, the activity and/or selectivity can be finely modulated. (2) Regulating the linkage facilitates charge transfer and/or modulates the electronic structure of catalytic metal sites, and accordingly, the intrinsic activity/selectivity can be further improved. (3) By means of pore wall/space engineering, the microenvironment surrounding catalytic metal sites can be modulated to optimize performance. Finally, the current challenges and future developments in the structural regulation of COF-based catalysts are discussed in detail. This Account provides insight into the structural regulation of COF-based catalysts at the atomic/molecular level toward improving their performance, which would provide significant inspiration for the design and structural regulation of other heterogeneous catalysts.

5.
J Am Chem Soc ; 146(13): 9026-9035, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38441064

RESUMEN

The introduction of single or multiple heterometal atoms into metal nanoparticles is a well-known strategy for altering their structures (compositions) and properties. However, surface single nonmetal atom doping is challenging and rarely reported. For the first time, we have developed synthetic methods, realizing "surgery"-like, successive surface single nonmetal atom doping, replacement, and addition for ultrasmall metal nanoparticles (metal nanoclusters, NCs), and successfully synthesized and characterized three novel bcc metal NCs Au38I(S-Adm)19, Au38S(S-Adm)20, and Au38IS(S-Adm)19 (S-Adm: 1-adamantanethiolate). The influences of single nonmetal atom replacement and addition on the NC structure and optical properties (including absorption and photoluminescence) were carefully investigated, providing insights into the structure (composition)-property correlation. Furthermore, a bottom-up method was employed to construct a metal-organic framework (MOF) on the NC surface, which did not essentially alter the metal NC structure but led to the partial release of surface ligands and stimulated metal NC activity for catalyzing p-nitrophenol reduction. Furthermore, surface MOF construction enhanced NC stability and water solubility, providing another dimension for tunning NC catalytic activity by modifying MOF functional groups.

6.
Angew Chem Int Ed Engl ; 63(17): e202401443, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38407530

RESUMEN

Atomically precise metal nanoclusters (NCs) with unique optical properties and abundant catalytic sites are promising in photocatalysis. However, their light-induced instability and the difficulty of utilizing the photogenerated carriers for photocatalysis pose significant challenges. Here, MAg24 (M=Ag, Pd, Pt, and Au) NCs doped with diverse single heteroatoms have been encapsulated in a metal-organic framework (MOF), UiO-66-NH2, affording MAg24@UiO-66-NH2. Strikingly, compared with Ag25@UiO-66-NH2, the MAg24@UiO-66-NH2 doped with heteroatom exhibits much enhanced activity in photocatalytic hydrogen production, among which AuAg24@UiO-66-NH2 presents the best activity up to 3.6 mmol g-1 h-1, far superior to all other counterparts. Moreover, they display excellent photocatalytic recyclability and stability. X-ray photoelectron spectroscopy and ultrafast transient absorption spectroscopy demonstrate that MAg24 NCs encapsulated into the MOF create a favorable charge transfer pathway, similar to a Z-scheme heterojunction, when exposed to visible light. This promotes charge separation, along with optimized Ag electronic state, which are responsible for the superior activity in photocatalytic hydrogen production.

7.
Angew Chem Int Ed Engl ; 63(10): e202318338, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38230982

RESUMEN

Carbon-based single-atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon-based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave-assisted rapid pyrolysis method is developed to afford carbon-based SACs within 3 min without inert gas protection. The obtained carbon-based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single-atom Ni implanted N-doped carbon (Ni1 -N-C) derived from a Ni-doped metal-organic framework (Ni-ZIF-8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO ) up to 1.06 A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1 -N-C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large-scale synthesis of SACs as well as other carbon-based materials for efficient catalysis.

8.
J Hazard Mater ; 465: 133468, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38219584

RESUMEN

Microporous organic networks (MONs) are highly porous materials that are particularly useful in analytical chemistry. However, the use of these materials is often limited by the functional groups available on their surface. Here, we described the polymerization of a sea urchin-like structure material at ambient temperature, that was functionalized with hydroxyl, carboxyl, and triazine groups and denoted as OH-COOH-MON-TEPT. A substantial proportion of OH-COOH-MON-TEPT was intricately decorated EDA-Fe3O4, creating a well-designed configuration (EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC) for superior adsorption of the target analytes phenylurea herbicides (PUHs) via magnetic solid-phase extraction (MSPE). The proposed method showed remarkably low limits of detection ranging from 0.03 to 0.22 ng·L-1. Experimental investigations and theoretical analyses unveiled the adsorption mode between EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC and PUHs. These findings establish a robust foundation for potential applications of EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC in the analysis of various polar contaminants.

9.
J Am Chem Soc ; 146(5): 3241-3249, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38277223

RESUMEN

Photocatalytic CO2 reduction holds great potential for alleviating global energy and environmental issues, where the electronic structure of the catalytic center plays a crucial role. However, the spin state, a key descriptor of electronic properties, is largely overlooked. Herein, we present a simple strategy to regulate the spin states of catalytic Co centers by changing their coordination environment by exchanging the Co species into a stable Zn-based metal-organic framework (MOF) to afford Co-OAc, Co-Br, and Co-CN for CO2 photoreduction. Experimental and DFT calculation results suggest that the distinct spin states of the Co sites give rise to different charge separation abilities and energy barriers for CO2 adsorption/activation in photocatalysis. Consequently, the optimized Co-OAc with the highest spin-state Co sites presents an excellent photocatalytic CO2 activity of 2325.7 µmol·g-1·h-1 and selectivity of 99.1% to CO, which are among the best in all reported MOF photocatalysts, in the absence of a noble metal and additional photosensitizer. This work underlines the potential of MOFs as an ideal platform for spin-state manipulation toward improved photocatalysis.

10.
Angew Chem Int Ed Engl ; 63(2): e202314988, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38016926

RESUMEN

Singlet oxygen (1 O2 ) is ubiquitously involved in various photocatalytic oxidation reactions; however, efficient and selective production of 1 O2 is still challenging. Herein, we reported the synthesis of nickel porphyrin-based covalent organic frameworks (COFs) incorporating functional groups with different electron-donating/-withdrawing features on their pore walls. These functional groups established a dedicated outer-sphere microenvironment surrounding the Ni catalytic center that tunes the activity of the COFs for 1 O2 -mediated thioether oxidation. With the increase of the electron-donating ability of functional groups, the modulated outer-sphere microenvironment turns on the catalytic activity from a yield of nearly zero by the cyano group functionalized COF to an excellent yield of 98 % by the methoxy group functionalized one. Electronic property investigation and density-functional theory (DFT) calculations suggested that the distinct excitonic behaviors attributed to the diverse band energy levels and orbital compositions are responsible for the different activities. This study represents the first regulation of generating reactive oxygen species (ROS) based on the strategy of outer-sphere microenvironment modulation in COFs.

11.
Food Chem ; 441: 138267, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38159435

RESUMEN

A novel cationic metal-organic framework (iMOF-Ni) was designed and synthesized by a solvothermal method. It was fabricated as a solid-phase extraction (SPE) cartridge and exhibited high adsorption performance for Bisphenols (BPs). The theoretical simulation demonstrated that the adsorption mechanism between iMOF-Ni and BPs was attributed to cation-π bonding, π-π interaction, and electrostatic interactions. Under optimized SPE, a method for analyzing BPs was established by combining high-performance liquid chromatography-diode array detection (HPLC-DAD). The developed method has good linearity (R2 ≥ 0.994), low detection limits (0.07-0.16 ng/mL), and good reproducibility (1.72-6.35 %, n = 6). The applicability of the method was further evaluated by analyzing water and milk samples. Recoveries of four BPs in spiked samples were from 72.2 % to 96.6 %.


Asunto(s)
Compuestos de Bencidrilo , Estructuras Metalorgánicas , Leche , Fenoles , Animales , Agua , Reproducibilidad de los Resultados , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión/métodos
12.
J Am Chem Soc ; 145(40): 21974-21982, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37779433

RESUMEN

Covalent organic frameworks (COFs) with a periodic network of permanent porosity and ordered structures have witnessed enormous potential in many applications. However, the synthesis of COFs with controllable morphologies under mild conditions remains a critical issue. Herein, we report a novel strategy to synthesize ß-ketoenamine-linked COFs by emulsion polymerization via phase transfer catalysis for the first time. This new approach employs commercially available pyridinium surfactants as emulsifiers for emulsion polymerization, which function as both catalysts and morphological regulators. By controlling the interfacial interaction in the emulsion, the TpPa-COF can be prepared into different morphologies, i.e., spheres, bowls, and fibers. Furthermore, the COF emulsion can be directly used to prepare a film by applying an electric field, providing a new route to prepare COF films. This phase transfer catalysis method also allows the synthesis of the TpPa-COF on a gram scale. The strategy is fast, facile, and effective in improving the morphology and particle size, providing a prospective route for the green preparation of functional COFs.

13.
J Am Chem Soc ; 145(44): 24230-24239, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37890005

RESUMEN

Developing an electrocatalyst platform that can control the interplay among activity, selectivity, and stability at atomic precision remains a grand challenge. Here, we have synthesized highly crystalline polymetallophthalocyanines (pMPcs, M = Fe, Co, Ni, and Cu) through the annulation of tetracyanobenzene in the presence of transition metals. The conjugated, conductive, and stable backbones with precisely installed metal sites render pMPcs a unique platform in electrochemical catalysis, where tunability emerges from long-range interactions. The construction of pCoNiPc with a Co and Ni dual-site integrates the advantageous features of pCoPc and pNiPc in electrocatalytic CO2 reduction through electronic communication of the dual-site with an unprecedented long atomic separation of ≥14 chemical bonds. This integration provides excellent activity (current density, j = -16.0 and -100 mA cm-2 in H-type and flow cell, respectively), selectivity (CO Faraday efficiency, FECO = 94%), and stability (>10 h), making it one of the best-performing reticular materials.

14.
Angew Chem Int Ed Engl ; 62(48): e202311625, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37656120

RESUMEN

The selectivity control of Pd nanoparticles (NPs) in the direct CO esterification with methyl nitrite toward dimethyl oxalate (DMO) or dimethyl carbonate (DMC) remains a grand challenge. Herein, Pd NPs are incorporated into isoreticular metal-organic frameworks (MOFs), namely UiO-66-X (X=-H, -NO2 , -NH2 ), affording Pd@UiO-66-X, which unexpectedly exhibit high selectivity (up to 99 %) to DMC and regulated activity in the direct CO esterification. In sharp contrast, the Pd NPs supported on the MOF, yielding Pd/UiO-66, displays high selectivity (89 %) to DMO as always reported with Pd NPs. Both experimental and DFT calculation results prove that the Pd location relative to UiO-66 gives rise to discriminated microenvironment of different amounts of interface between Zr-oxo clusters and Pd NPs in Pd@UiO-66 and Pd/UiO-66, resulting in their distinctly different selectivity. This is an unprecedented finding on the production of DMC by Pd NPs, which was previously achieved by Pd(II) only, in the direct CO esterification.

15.
Angew Chem Int Ed Engl ; 62(38): e202308089, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37551837

RESUMEN

The development of heterogeneous asymmetric catalysts has attracted increasing interest in synthetic chemistry but mostly relies on the immobilization of homogeneous chiral catalysts. Herein, a series of chiral metal-organic frameworks (MOFs) have been fabricated by anchoring similar chiral hydroxylated molecules (catalytically inactive) with different lengths onto Zr-oxo clusters in achiral PCN-222(Cu). The resulting chiral MOFs exhibit regulated enantioselectivity up to 83 % ee in the asymmetric ring-opening of cyclohexene oxide. The chiral molecules furnished onto the catalytic Lewis sites in the MOF create multilevel microenvironment, including the hydrogen interaction between the substrate and the chiral -OH group, the steric hindrance endowed by the benzene ring on the chiral molecules, and the proximity between the catalytic sites and chiral molecules confined in the MOF pores, which play crucial roles and synergistically promote chiral catalysis. This work nicely achieves heterogeneous enantioselective catalysis by chiral microenvironment modulation around Lewis acid sites.

16.
Sci Bull (Beijing) ; 68(17): 1886-1893, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544879

RESUMEN

Inspiration from natural enzymes enabling creationary catalyst design is appealing yet remains extremely challenging for selective methane (CH4) oxidation. This study presents the construction of a biomimetic catalyst platform for CH4 oxidation, which is constructed by incorporating Fe-porphyrin into a robust metal-organic framework, UiO-66, furnished with saturated monocarboxylic fatty acid bearing different long alkyl chains. The catalysts demonstrate the high efficiency in the CH4 to methanol (CH3OH) conversion at 50 °C. Moreover, the selectivity to CH3OH can be effectively regulated and promoted through a fine-tuned microenvironment by hydrophobic modification around the Fe-porphyrin. The long-chain fatty acids anchored on the Zr-oxo cluster of UiO-66 can not only tune the electronic state of the Fe sites to improve CH4 adsorption, but also restrict the amount of H2O2 around the Fe sites to reduce the overoxidation. This behavior resembles the microenvironment regulation in methane monooxygenase, resulting in high CH3OH selectivity.

17.
Adv Mater ; 35(39): e2302512, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421606

RESUMEN

While the microenvironment around catalytic sites is recognized to be crucial in thermocatalysis, its roles in photocatalysis remain subtle. In this work, a series of sandwich-structured metal-organic framework (MOF) composites, UiO-66-NH2 @Pt@UiO-66-X (X means functional groups), is rationally constructed for visible-light photocatalytic H2 production. By varying the ─X groups of the UiO-66-X shell, the microenvironment of the Pt sites and photosensitive UiO-66-NH2 core can be simultaneously modulated. Significantly, the MOF composites with identical light absorption and Pt loading present distinctly different photocatalytic H2 production rates, following the ─X group sequence of ─H > â”€Br > â”€NA (naphthalene) > â”€OCH3  > â”€Cl > â”€NO2 . UiO-66-NH2 @Pt@UiO-66-H demonstrates H2 production rate up to 2708.2 µmol g-1  h-1 , ≈222 times that of UiO-66-NH2 @Pt@UiO-66-NO2 . Mechanism investigations suggest that the variation of the ─X group can balance the charge separation of the UiO-66-NH2 core and the proton reduction ability of Pt, leading to an optimal activity of UiO-66-NH2 @Pt@UiO-66-H at the equilibrium point.

18.
Angew Chem Int Ed Engl ; 62(31): e202306135, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37255487

RESUMEN

Covalent organic frameworks (COFs), possessing pre-designable structures and tailorable functionalities, are promising candidates for photocatalysis. Nevertheless, the most studied imine-linked COFs (Im-COFs) usually suffer from unsatisfactory stability and photocatalytic performance. To meet this challenge, a series of highly stable enaminone-linked COFs (En-COFs) have been synthesized and afford much improved visible-light-driven hydrogen production activities, ranging from 44 to 1078 times that of isoreticular Im-COFs, with the only difference being the linkages (enaminone vs. imine) in their structures. The enhanced light-harvesting ability, facilitated exciton dissociation and improved chemical stability account for the superior activity. Furthermore, quinoline-linked COFs (Qu-COFs) have been further obtained via the post-modification of Im-COFs. Compared with Im-COFs, the photocatalytic activities of Qu-COFs are significantly improved after modification, but still below those of the corresponding En-COFs (3-107 times). The facile synthesis, excellent activity, and high chemical stability demonstrate that En-COFs are a promising platform for photocatalysis.

19.
Angew Chem Int Ed Engl ; 62(26): e202305212, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37129888

RESUMEN

The chemical microenvironment modulation of metal nanoparticles (NPs) holds promise for tackling the long-lasting challenge of the trade-off effect between activity and selectivity in catalysis. Herein, ultrafine PdCu2 NPs incorporated into covalent organic frameworks (COFs) with diverse groups on their pore walls have been fabricated for the semihydrogenation of alkynes. The Cu species, as the primary microenvironment of Pd active sites, greatly improves the selectivity. The functional groups as the secondary microenvironment around PdCu2 NPs effectively regulate the activity, in which PdCu2 NPs encapsulated in the COF bearing -CH3 groups exhibit the highest activity with >99 % conversion and 97 % selectivity. Both experimental and calculation results suggest that the functional group affects the electron-donating ability of the COFs, which successively impacts the charge transfer between COFs and Pd sites, giving rise to a modulated Pd electronic state and excellent catalytic performance.


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Alquinos , Catálisis , Electrónica
20.
Nat Commun ; 14(1): 3083, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248231

RESUMEN

The strong excitonic effects widely exist in polymer-semiconductors and the large exciton binding energy (Eb) seriously limits their photocatalysis. Herein, density functional theory (DFT) calculations are conducted to assess band alignment and charge transfer feature of potential donor-acceptor (D-A) covalent organic frameworks (COFs), using 1,3,5-tris(4-aminophenyl)triazine (TAPT) or 1,3,5-tris(4-aminophenyl)benzene (TAPB) as acceptors and tereph-thaldehydes functionalized diverse groups as donors. Given the discernable D-A interaction strengths in the D-A pairs, their Eb can be systematically regulated with minimum Eb in TAPT-OMe. Guided by these results, the corresponding D-A COFs are synthesized, where TAPT-OMe-COF possesses the best activity in photocatalytic H2 production and the activity trend of other COFs is associated with that of calculated Eb for the D-A pairs. In addition, further alkyne cycloaddition for the imine linkage in the COFs greatly improves the stability and the resulting TAPT-OMe-alkyne-COF with a substantially smaller Eb exhibits ~20 times higher activity than the parent COF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...